1 3 M ay 2 00 5 Voter model on Sierpinski fractals Krzysztof

نویسندگان

  • Krzysztof Suchecki
  • Janusz A Ho
چکیده

We investigate the ordering of voter model on fractal lattices: Sierpinski Carpets and Sierpinski Gasket. We obtain a power law ordering, similar to the behavior of one-dimensional system, regardless of fractal ramification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 M ay 2 00 9 . BUFFON NEEDLES LANDING NEAR SIERPINSKI GASKET

In this paper we modify the method of Nazarov, Peres, and Volberg [14] to get an estimate from above of the Buffon needle probability of the nth partially constructed Sierpinski gasket of Hausdorff dimension 1.

متن کامل

Self-assembly of the discrete Sierpinski carpet and related fractals (Preliminary version)

It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal’s triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree’s tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues mo...

متن کامل

Geometric Modelling of General Sierpinski Fractals using iterated function system in Matlab

Study on properties of general Sierpinski fractals, including dimension, measure, Lipschitz equivalence, etc is very interesting. Like other fractals, general Sierpinski fractals are so complicated and irregular that it is hopeless to model them by simply using classical geometry objects. In [22], the authors the geometric modelling of a class of general Sierpinski fractals and their geometric ...

متن کامل

Self-assembly of the Discrete Sierpinski Carpet and Related Fractals

It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal’s triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree’s tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues mo...

متن کامل

Smooth bumps, a Borel theorem and partitions of unity on p.c.f. fractals.∗

Recent years have seen considerable developments in the theory of analysis on certain fractal sets from both probabilistic and analytic viewpoints [1, 10, 19]. In this theory, either a Dirichlet energy form or a diffusion on the fractal is used to construct a weak Laplacian with respect to an appropriate measure, and thereby to define smooth functions. As a result the Laplacian eigenfunctions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005